Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

sqrtAcc(x, y) → condAcc(||(>=@z(*@z(y, y), x), <@z(y, 0@z)), x, y)
condAcc(FALSE, x, y) → sqrtAcc(x, +@z(y, 1@z))
sqrt(x) → sqrtAcc(x, 0@z)
condAcc(TRUE, x, y) → y

The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

sqrtAcc(x, y) → condAcc(||(>=@z(*@z(y, y), x), <@z(y, 0@z)), x, y)
condAcc(FALSE, x, y) → sqrtAcc(x, +@z(y, 1@z))
sqrt(x) → sqrtAcc(x, 0@z)
condAcc(TRUE, x, y) → y

The integer pair graph contains the following rules and edges:

(0): SQRT(x[0]) → SQRTACC(x[0], 0@z)
(1): CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z))
(2): SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2])

(0) -> (2), if ((x[0]* x[2]))


(1) -> (2), if ((+@z(y[1], 1@z) →* y[2])∧(x[1]* x[2]))


(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)) →* FALSE))



The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): SQRT(x[0]) → SQRTACC(x[0], 0@z)
(1): CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z))
(2): SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2])

(0) -> (2), if ((x[0]* x[2]))


(1) -> (2), if ((+@z(y[1], 1@z) →* y[2])∧(x[1]* x[2]))


(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)) →* FALSE))



The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
IDP
              ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z))
(2): SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2])

(2) -> (1), if ((x[2]* x[1])∧(y[2]* y[1])∧(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)) →* FALSE))


(1) -> (2), if ((+@z(y[1], 1@z) →* y[2])∧(x[1]* x[2]))



The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z)) the following chains were created:




For Pair SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2]) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(>=@z(x1, x2)) = -1   
POL(0@z) = 0   
POL(SQRTACC(x1, x2)) = x1 + (-2)x2   
POL(*@z(x1, x2)) = x1·x2   
POL(TRUE) = 1   
POL(||(x1, x2)) = 1   
POL(+@z(x1, x2)) = x1 + x2   
POL(CONDACC(x1, x2, x3)) = (-1)x1 + x2 + (-2)x3   
POL(FALSE) = 1   
POL(<@z(x1, x2)) = -1   
POL(1@z) = 1   
POL(undefined) = -1   

The following pairs are in P>:

CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z))
SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2])

The following pairs are in Pbound:

CONDACC(FALSE, x[1], y[1]) → SQRTACC(x[1], +@z(y[1], 1@z))

The following pairs are in P:
none

At least the following rules have been oriented under context sensitive arithmetic replacement:

||(FALSE, FALSE)1FALSE1
||(TRUE, TRUE)1TRUE1
||(TRUE, FALSE)1TRUE1
TRUE1||(FALSE, TRUE)1
+@z1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ IDP
              ↳ IDPNonInfProof
                ↳ AND
IDP
                    ↳ IDependencyGraphProof
                  ↳ IDP

I DP problem:
The following domains are used:none

R is empty.
The integer pair graph is empty.
The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDependencyGraphProof
            ↳ IDP
              ↳ IDPNonInfProof
                ↳ AND
                  ↳ IDP
IDP
                    ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(2): SQRTACC(x[2], y[2]) → CONDACC(||(>=@z(*@z(y[2], y[2]), x[2]), <@z(y[2], 0@z)), x[2], y[2])


The set Q consists of the following terms:

sqrtAcc(x0, x1)
condAcc(FALSE, x0, x1)
sqrt(x0)
condAcc(TRUE, x0, x1)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.